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Abstract— We discuss the design and implementation of a
combined repetitive and minimum-variance adaptive control
strategy for generating a-priori-specified desired periodic flap-
ping trajectories of a flying microrobot’s wings. With this
method and using a static force sensing experimental setup,
relevant information about the forces produced by the wings’
flapping can be gathered. In turn, this information can be
used for designing real-time controllers capable of enforcing
desired trajectories on microrobotic insects in vertical flight
and hovering.

I. INTRODUCTION

In [1] and [2], it was shown that, by performing static
experiments and using modern linear time-invariant (LTI)
system identification techniques, a significant amount of
information can be gathered about the dynamics of flapping-
wing microrobots that are similar to the one first presented in
[3], which empirically demonstrated the feasibility of flying
robotic insects. In [4], employing the static experimental
methods developed in [1] and [2], a strategy for control-
ling the altitude of a constrained, one-degree-of-freedom
flapping-wing flying microrobot was developed.

The control strategies applied in the static flapping experi-
ments presented in [1], [2] and [4] were derived from the no-
tion of adaptive feedforward cancellation (AFC), commonly
employed for rejecting families of periodic disturbances (for
examples, see [5], [6] and references therein). The main idea
introduced in [1], [2] and [4] is that AFC-based schemes
can be used for tracking desired periodic actuator outputs
by treating these as output disturbances to be rejected.
Also in [1] and [2], it was shown that, simultaneously, the
same control strategy can be used for rejecting harmonic
disturbances affecting the system. This is important, since
a substantial amount of information about the lift forces
produced by flapping-wing microrobots can be gathered
through experiments in which the robot’s flapping angles
follow desired sinusoidal trajectories.

An alternative to AFC-based schemes is the use of an
LTI strategy based on the internal model principle (IMP)
[7]. Similar to the adaptive cases described in the previous
paragraph, it is possible to think of the desired periodic
actuator outputs as disturbances to be rejected, but instead of

This work was partially supported by the National Science Foundation
(award number CCF-0926148) and the Wyss Institute for Biologically
Inspired Engineering. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

The authors are with the School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138, USA, and the Wyss institute
for Biologically Inspired Engineering, Harvard University, Boston, MA
02115, USA (email: chirarat@fas.harvard.edu; nperez@seas.harvard.edu;
rjwood@eecs.harvard.edu).
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using an adaptive strategy, the tracking of periodic references
and rejection of periodic disturbances can be done through
the implementation of LTI IMP-based repetitive controllers
[8], [9], [10], [11]. This is the approach pursued here,
using the methods developed in [12], [13] and [14], which
additionally allow one to combine repetitive and minimum-
variance adaptive components in order to track periodic
references, and reject harmonic and stochastic disturbances,
simultaneously. In the cases presented in this paper, the main
challenges are experimental in nature, since the controller
design has to consider sensing and actuation limitations at
the same time. In order to validate the chosen approach,
compelling empirical evidence is presented.

The rest of the paper is organized as follows. Section II
describes the flapping-wing microrobot used in the
experiments and the experimental setup. Also, this section
outlines the control objectives and challenges. Section III
describes the proposed repetitive and minimum-variance
adaptive control strategies. Simulation and experimental
results are presented in Sections IV and V, respectively.
Finally, conclusions are given in Section VI.

Notation–

• R and Z
+ denote the sets of real and non-negative

integer numbers, respectively.
• The variable t is used to index discrete time, i.e., t =
{kTs}

∞
k=0, with k ∈Z

+ and Ts ∈R. As usual, Ts is refered
as the sampling-and-hold time.

• The variable τ is used to index continuous time. Thus,
for a generic continuous-time variable x(τ), x(t) is the
sampled version of x(τ).

• z−1 denotes the delay operator, i.e., for a signal x,
z−1x(k) = x(k − 1) and conversely zx(k) = x(k + 1),
where x(k) = x(t) = x(kTs).

• |·| denotes the standard module of a complex number.

II. DESCRIPTION OF THE EXPERIMENT

A. Microrobot and Experimental Apparatus

The flapping-wing robotic insect used in the experiments is
shown in Fig. 1. This was entirely developed and fabricated
at the Harvard Microrobotics Laboratory, based upon designs
which previously demonstrated the ability to liftoff [3]. The
main components include a piezoelectric bending bimorph
cantilever actuator [15], a flexure-based transmission, a pair
of airfoils, and an airframe which serves as a mechanical
ground. The transmission maps the approximately linear
motion of the actuator into the flapping motion of the wings.
The transmission consists of links and joints with geometries
designed to maximize the product of stroke amplitude and
first resonant frequency, given known actuator and airfoil
properties.
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Fig. 1. Photograph of the biologically inspired microrobotic flying insect.
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Fig. 2. Illustration of the microrobot employed in the research presented in
this article, similar to the one in [3]. This microrobot was entirely designed
and fabricated by the authors at the Harvard Microrobotics Laboratory. ΓL:
Average lift force; ϕ : Flapping angle (also referred as stroke angle); θ :
passive rotation angle.

Flight forces are generated through a phenomenon referred
to as passive rotation. Here, the wings are connected to
the mechanical transmission through flexible hinges, which
allow the wings to rotate (angle θ (τ) in Fig. 2). This rotation
is caused by the inertial forces produced by the flapping ϕ(τ)
and by the aerodynamic forces generated by the interaction
of the wings with the air. As explained in [16], an angle θ
different than 0◦ implies that the wings have a positive angle
of attack, which causes the generation of lift forces. The
microrobot was designed such that, for sinusoidal actuator
displacements, drag forces are symmetric about the upstroke
and downstroke and the mean lift force vector intersects the
center of mass. Thus, ideally, no body torques are generated
and the angles of rotation in three dimensions about the
robots center of mass (pitch, roll and yaw) should stay at
0◦.

In some studies of biological flapping-flight [17], [18],
[19], the mean total force, ΦT , generated by a symmetrical
wing pair throughout the stroke is estimated as

ΦT =
∫ Ξ

0
ρCΦν2

r (ξ )c(ξ )dξ , (1)

which is a standard quasi-steady blade-element formulation
of flight force (see [16] and references therein), where ρ is
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Fig. 3. Setup used in the static flapping experiments. Left Drawing:
Isometric view. Right Drawing: Side view. Here, the flapping microrobot is
attached to an Invar double-cantilever beam, whose deflection is measured
by a capacitive displacement sensor. This deflection is proportional to the
instantaneous lift force generated by the flapping of the wings. The actuator
output is measured using a CCD laser displacement sensor.

the density of the air, CΦ is the mean force coefficient of the

wing throughout the stroke, ν2
r (ξ ) is the mean square relative

velocity of each wing section, c(ξ ) is the chord length of
the wing at a distance ξ from the base, and Ξ is the total
wing length. In the case of a sinusoidal stroke of frequency
fr, ϕ(τ) = ϕ0 sin(2π frτ), with a horizontal stroke plane, the
mean square relative velocity of each wing section can be
roughly estimated as

ν2
r (ξ ) = 4π2 f 2

r ξ 2ϕ2
0

1

Tr

∫ Tr

0
cos2(2π frτ)dτ

= 2π2ξ 2ϕ2
0 f 2

r , (2)

with Tr = f−1
r . This implies that regardless of the size and

shape of the wing, the estimated mean total flight force is
directly dependent on f 2

r and ϕ2
0 . This indicates that in order

for flying insects to accelerate against gravity or hover at
a desired altitude, they can modulate the average lift force
by changing the stroke amplitude, ϕ0, or by changing the
stroke frequency, fr. For the robots considered here, the
transmission that maps the actuator output, labeled as y(τ),
to the stroke angle ϕ(τ) can be approximated by a constant
κT , i.e., ϕ(τ) = κT y(τ). Thus, changing the amplitude and/or
the frequency of y(τ), ΦT can be modulated.

In steady state, the average discrete-time lift force can
estimated as

ΓL(t) =
1

NL

NL−1

∑
i=0

γL(t −Tsi), (3)

where γL(t) is the sampled version of the continuous-time
instantaneous lift force, γL(τ). Here, t = kTs, with Ts ∈ R

fixed and 0 < NL ∈ Z
+. Note that assuming steady state con-

ditions, for the perfectly symmetric flapping case described
in the previous paragraph, ΓL(t) can be thought of as an
estimate of ΦT .

An illustration of the experimental setup employed in the
research presented in this paper is shown in Fig. 3. The
setup mainly consists of two sensing subsystems: a force
sensor and a short range laser position sensor. The first sensor
measures instantaneous lift forces by sensing the deflection
of a double-cantilever beam to which the microrobot is
rigidly connected. The beam deflection is measured using
a capacitive displacement sensor. For details on the design
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v(t)

Fig. 4. Idealized system dynamics. P(z): Discrete-time open-loop plant;
y(t): Output displacement of actuator; v(t): Output disturbance.
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Fig. 5. Bode plot of the identified model P̂(z) of the plant P(z). A 24th-
order model is shown in green, a reduced 2nd-order model is shown in
blue.

of this force sensor see [20]. The second sensing device
in the setup is a CCD laser displacement sensor LK-2001
fabricated by Keyence, used for measuring the piezoelectric
actuator displacement output, y(t). These two sensors can be
used for estimating two relevant input-output mappings of
the flying microrobotic system, which, as described in [4],
are essential for designing strategies for altitude control. One
is the dynamic mapping from the input voltage to the actuator
displacement, labeled as P, whose idealized block diagram
is shown in Fig. 4. Here, u(t) is the discrete-time input,
y(t) is the measured discrete-time output and v(t) is output
disturbance, representing all the disturbances affecting the
system, including vibrations generated by the aerodynamic
forces produced by the flapping of the wings. The other
is the static mapping, labeled as Ψ, from the actuator
displacement to the steady-state average lift force, assuming
sinusoidal displacements y(t). Thus, Ψ(A, f ) = ΓL, where A

and f are the amplitude and frequency of the displacement
y(t) = Asin(2π f t), respectively. ΓL is the abstract steady-
state average lift-force produced by the flapping of the
insect’s wings, i.e., in (3) NL → ∞.

As described in the next subsection, an estimate of P
can be found using well-known modern system identification
methods. On the other hand, in order to estimate Ψ, a
controller that forces the output y(t) to follow a desired
output signal yd(t) =Ad sin(2π fdt) is required. Then, a static
mapping or a lookup table relating (A, f ) to ΓL can be
computed. In [1], [2] and [4], the controller used for tracking
desired outputs with the form yd(t) = Ad sin(2π fdt) was
designed employing a purely adaptive strategy, based on
the AFC scheme. The main contribution of this paper is
the introduction of a new approach for solving the problem
of estimating Ψ, based on repetitive and minimum-variance
adaptive control.

B. Identification of the System Dynamics P

The identification of the system dynamics P is done
assuming the LTI structure in Fig. 4. An estimate of P, P̂,
is found using the n4sid algorithm [21], after exciting the
system with white noise. The algorithm originally yields a

24th-order state-space discrete-time representation, which is
reduced to a 2nd-order model system, using the balanced
truncation technique [22], [23]. The resulting models are
shown in Fig. 5. Note that for convenience, units are ignored
and the identified models have been normalized so that the
respective DC gain is 0 dB. The 2nd-order reduced model is
used to design a repetitive controller that enforces desired
sinusoidal trajectories of the actuator and simultaneously
cancels out harmonic disturbances produced by the nonlinear
nature of the plant, as described in the next section.

III. CONTROL STRATEGY

A. Repetitive Control for Reference Tracking

Repetitive control has been proven to be a very effective
method for rejecting families of output periodic disturbances,
especially when used for canceling the repeatable runout in
hard disk drives (HDDs) (for example, see [12], [13], [14]).
In [1] and [2], it was shown that the dynamic mapping P,
when excited in closed loop with a sinusoidal input u(t),
can be thought of as an LTI plant affected by an output
disturbance d(t) with the form

d(t) = r(t)+ v(t) = r(t)+ h(t)+w(t), (4)

where, r(t) is the negative of a sinusoidal reference, i.e.,
r(t) = −yd(t) = −Ad sin(2π fdt) and v(t) is composed of
stochastic disturbances, denoted by w(t), and harmonics with
frequencies that are integer multiple of fd , denoted by h(t).
Here, through analysis, simulations, and experiments, we
show that a repetitive-adaptive strategy can be employed to
force the system to follow a desired trajectory and simulta-
neously cancel output disturbances.

To begin with, without loss of generality, let us for now
assume that w(t) = 0 (i.e., v(t) = h(t)), the LTI system P is
stable and that d(t) = r(t)+h(t) is a priori known. Thus, if,
as shown in Fig. 6, a stable feedforward filter K were to be
designed so that d(t) is rejected, then

z(t) = [Pu] (t)+ d(t) = [Pu](t)+ h(t)+ r(t) = 0. (5)

Note that, consistent with the notation in Section II, the
measured actuator output is y(t) = [Pu](t)+h(t) and r(t) =
−yd(t) is generated inside the digital signal processor (DSP)
used for control. Thus, if (5) is satisfied, it follows that

y(t) =−r(t) = yd(t). (6)

In words, the measured actuator output y(t) follows the
reference yd(t). Noticing from Fig. 6 that

z = (1−PK)d (7)

and recalling the form of r(t)+h(t), the design goal reduces
to finding a stable K such that the frequency response of the
plant (1−PK) is equal to 0 at frequencies i fd , 0 < i ∈ Z

+.
This can be done by solving the Diophantine equation

RD+KP = 1, (8)

where R and K are the unknowns and D is an internal model

with the form

D = 1− qz−N
, (9)

in which q is a zero-phase low-pass filter and N = fs
fd
∈ Z

+

(see [14] and references therein). Note that if
fs
fd

is not an
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integer, the signal d will be attenuated but not completely
annihilated.

As done in [12], [13] and [14], using some of the ideas in
[9], [11] and [24], a particular solution pair {Ro,Ko} can be
found. The method starts by separating P into its minimum
and non-minimum phase parts, denoted by P+ and P−, as

P = P+P−, (10)

with

P+(z) =
β+(z)

α(z)
and P−(z) = β−(z), (11)

where α , β+ and β− are polynomials. All the zeros of β+

are stable and all the zeros of β− are unstable. Substituting
(11) into (9) we can write

RD+κP− = 1, with κ = KP+. (12)

Among the infinitely many solutions to (12), it is verifiable
that one of the solutions is given by

Ro =
1

1− (1− γP∗
−P−)qz−N

,

(13)

κo = qγP∗
−z−NRo, Ko = κoP−1

+ .

Here, P∗
− is defined as P∗

−(z
−1) = P−(z), and 0 < γ ∈ R.

From this point onwards, in block diagrams and equations
we employ the symbols Ko and Ro under the understanding
that those correspond to the specific solution in (13).

The block diagram in Fig. 6 assumes that the signal d =
r + h is perfectly known. However, in practice h has to be
estimated online according the diagram in Fig. 7, where d̂ =
ĥ+ r is an estimate of d and P̂ is an identified model for
the plant P. When the estimation scheme shown in Fig. 7 is
employed, the feedforward disturbance cancelation filter Ko

becomes part of a feedback controller Uo, connected in the
positive feedback configuration, computable as

Uo =
−Ko

1−KoP̂
. (14)

Since Uo is a single-input-single-output (SISO) LTI con-
troller, its stability and performance can be analyzed using
all the tools of classical control, such as, gain and phase
margins, along with the use of sensitivity functions. In this
case, we are interested on the output disturbance sensitivity
function

Vo =
1

1−PUo

. (15)

Note that under the assumption P̂ = P

Vo = 1−PKo, (16)

which is the feedforward mapping from d to y shown in
Fig. 6. This implies that the closed-loop performance is not
altered by the estimation process, as long as, the model P̂

is an exact match of the true plant P. This implies that
the closed-loop system in Fig. 7 will be stable for any
stable plants P and Ko, under the assumption that P̂ = P.
Thus, nominal stability is guaranteed if the design algorithm
produces a stable Ko.

P- - h? -−K-d u z

d

Fig. 6. Feedforward output disturbance rejection scheme used in the
design of the repetitive controller Ko , used for tracking references. Here,
d(t) = r(t)+h(t)+w(t), where r(t) is the negative of the reference yd(t) =
Ad sin(2π fd t); h(t) is the sum of all the harmonic disturbances affecting
the system; w(t) is the sum of all the stochastic disturbances affecting the
system.

Note that Ko is formed by the multiplication of the systems
qγP∗

−z−N , Ro, and P−1
+ . By definition P−1

+ is stable. The
system qγP∗

−z−N is stable and causal provided that q is stable
and that N is large enough. Thus, Ko will be stable as long
as Ro is stable. Using the small gain theorem, it is possible
to show that the stability of Ro is ensured if

∣

∣

∣
1− γP∗

−(e
jθ )P−(e

jθ )
∣

∣

∣
<

1

|q(e jθ )|
, ∀ θ ∈ [0,π ]. (17)

Note that from (17), the real number γ can be regarded as a
stability and performance tuning parameter.

B. Repetitive Controller Design

To demonstrate the suitability of the proposed approach,
a basic repetitive controller scheme is designed and then
modified in order to test some specific ideas pertaining to
the control of flapping-wing microrobots. Here, the sample-
and-hold rate used by the DSP running the controller is
10 KHz and the desired actuator output yd is a sinusoid with
frequency fd = 100 Hz. Thus, it immediately follows that

N = fs
fd
= 100. The other design parameters are γ = 1,500

and

q =
(

1− 10−6
)[

2
(

q0 − q2
0

)

−
(

2q0 − q2
0

)2
]

, (18)

with

q0 =
(

1− 10−6
)[

2
(

q1 − q2
1

)

−
(

2q1 − q2
1

)2
]

,

q1(z
−1
,z) = 0.2z−1 + 0.6+ 0.2z.

An estimate of the resulting loop-gain L = −PUo, com-
puted as

L̂ =−P̂Uo =
PKo

1−KoP̂
. (19)

is shown in Fig. 8. Using this Bode plot and classical control
techniques, the robustness of the closed-loop is evaluated. In
this case, for γ = 1,500 and the q in (18), the resulting gain
and phase margins are 9.85 dB at 4,950 Hz and −96.8◦ at
4,750 Hz, respectively. This indicates that the closed-loop
system is robustly stable and that there is room for playing
with the controller gain in order to increase the transient
response of the system. Similarly, the performance achieved
by the repetitive controller can be evaluated from Fig. 9.
There, the first notch at 100 Hz indicates that in steady
state the output y(t) will closely follow the reference yd(t),
in the absence of harmonic disturbances. The other notches
indicate that when harmonic disturbances are present, these
will be rejected by the effect of the controller. Note that
once Uo is computed according to the method in the previous
subsection, this can be further tuned as

Uδ = δUo, (20)
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Fig. 7. Estimation of ĥ+ r and repetitive control scheme. P: True plant;
P̂: Identified model of P; Ko: Repetitive controller; h: Harmonic output
disturbance; ĥ: Online estimate of h.
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Fig. 9. Estimate of the sensitivity function Vo, calculated from P̂ and Ko.

where, δ ∈ R is chosen by evaluating the information in
Figs. 8 and 9.

C. Adaptive-Repetitive Control

Thus far we have assumed that the stochastic disturbances
are negligible (i.e., w(t) = 0). In [12], it was first shown
that the solution in (13) is suitable for deriving a scheme
that combines repetitive and adaptive elements capable of
rejecting periodic and stochastic disturbances simultaneously.
Here, we show that the same scheme can be used to track
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Fig. 10. Block diagram of the adaptive-repetitive control scheme.
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Fig. 11. Block diagram of the adaptive-repetitive control scheme, modified
for the use of the tuning parameter δ .

the signal yd(t), reject the harmonic disturbances h(t) and
simultaneously attenuate the stochastic disturbance w(t).

Note that from the pair {Ro,Ko}, a family of solutions for
(8) can be derived as

R(Q) = Ro −QG, K(Q) = Ko +QD, (21)

where Q is an arbitrary rational LTI asymptotically stable
filter, i.e., Q ∈ RH∞. This parametrization allows us to
formulate a problem with the objective of minimizing the
variance of the system output random variable z(t), ∀t. From
this perspective, the sequence z(t) in Fig. 6, and other related
figures, can be regarded as a realization of the random
process z. Now, let z be a zero-mean stationary ergodic
random process for any given stable LTI filter Q. Then, the
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minimum-variance problem can be stated as

min
Q∈RH∞

E
{

z2(t)
}

. (22)

It is verifiable that (22) is equivalent to the H2 problem

min
Q∈RH∞

‖∆−PK(Q)∆‖2 , (23)

where ∆ is a stable filter that maps a stationary white
zero-mean unit-variance random process to the disturbance
random process d, whose realization is d in Fig. 6. Filters
like ∆ are called disturbance models of d. Considering (8)
and the parametrized systems K(Q) and R(Q), it follows that
(23) is equivalent to

min
Q∈RH∞

‖RoD∆−QPD∆‖2 , (24)

which can be solved using standard H2 methods. The solution
to (24) requires the disturbance model ∆. In practice, the
identification of accurate and reliable disturbance models is
extremely difficult and often impossible. Fortunately, (24)
can be approximated with the use of adaptive filters, as
shown in Fig. 10.

In Fig. 10, the filter Q can be adapted using any adaptive
filtering algorithm such as RLS (recursive least-squares)
or LMS (least-mean-squares). Here, the standard LMS and
RLS algorithms [25] are employed in both simulations and
experiments. In the case shown in Fig. 10, the controller
K(Q) = Ko + QD can be broken into a purely repetitive
part, Ko, and an adaptive part, QD. Assuming perfect plant
matching (i.e., P̂ = P), the problem being solved recursively
is

min
Q∈RH∞

E
{

[(RoD−QPD)d(t)]2
}

, (25)

where d(t) = r(t)+ h(t)+w(t). Note that w(t) is a random
variable, and that, r(t) and h(t) are unknown but determinis-
tic variables. The main idea in the scheme in Fig. 10 is that
the adaptive algorithm is run using a regressor constructed
using the values from the signal D(v̂+ r). Thus, the periodic
content in v̂+ r is rejected by Ko, and what is left, D(v̂+ r),
is attenuated adaptively. In the simulations and experiments

presented here, we impose the constraint Q(z) = ∑
NQ

i=0 σiz
−i,

where NQ is the order of the filter Q and σi ∈R. This allows
us to enforce the stability of Q, since finite impulse response

(FIR) filters are always stable, provided that the coefficients
remain bounded. The convergence properties of the scheme
in Fig. 10 can be studied following the approach in [26].

When the tuning parameter δ in (20) is used, the scheme
in Fig. 10 no longer minimizes the variance of z(t), and
therefore, a new adaptive structure is required. Here, we
proposed the scheme in Fig. 11, in which the signal that is
input to the adaptive-repetitive controller is not the estimate
of v+ r, but

s =

[

1

1+(δ − 1)(Ko +QD)P

]

(v̂+ r) . (26)

This follows from noting that the objective is to adapt a
filter Q that minimizes the mean-square of the signal z =
y+r, which can be expressed in terms of the random variable
associated with s, s, as

min
Q∈RH∞

E
{

[{1+(δ − 2)KoP+(δ − 2)QDP}s(t)]2
}

. (27)
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Fig. 12. Upper Plot: Section of the time series of the disturbance v(t) =
h(t)+w(t), used in the simulations. Bottom Plot: PSD of the disturbance
v(t), used in the simulations.
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PSD of d(t) = r(t) + h(t) +w(t)

PSD of y(t)

Fig. 13. Upper Plot: Section of the time series of the reference yd(t)
and the simulated measurement y(t), obtained using the scheme in Fig. 10
with a 512th-order LMS-based adaptive filter Q. Bottom Plot: PSDs of the
disturbance signal d(t) = r(t)+h(t)+w(t) and simulated measurement y(t).

When δ = 1, (27) reduces to (25).

IV. SIMULATIONS

In this section, we use simulations to exemplify how the
methods described in Section III can be employed for signal
tracking and for rejecting harmonic and stochastic distur-
bances simultaneously. Since in simulation the interaction
between subsystems and their effect on signals is completely
known and repeatable, each component of the control scheme
can be understood and explained. The stochastic content in
the disturbance v(t), w(t), is generated by filtering white
noise through a low-pass filter with a cutoff frequency of
1 KHz (the sample-and-hold rate is 10 KHz). Also, periodic
non-harmonic content with frequencies (i fd + 50) Hz, i ∈ Z,
is added to w(t). The harmonic content, h(t), is a sum of
sinusoids with frequencies i fd Hz, i ∈ Z, and accordingly
with the design in Section III, fd = 100 Hz. A section of the
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TABLE I

SIMULATION RESULTS: EMPIRICAL STANDARD DEVIATION OF THE

CONTROL ERROR z = r+ y, OBTAINED USING THE

ADAPTIVE-REPETITIVE (A-R) SCHEME

Algorithm / Order of Q
After 0.3 s After 4.0 s

δ = 1.0 δ = 1.5 δ = 1.0 δ = 1.5

Feedforward 0.1569 0.1148
Repetitive 0.1235 0.0756 0.0745 0.0758
A-R with LMS / 32 0.1238 0.0761 0.0754 0.0758
A-R with LMS / 64 0.1285 0.0843 0.0768 0.0806
A-R with LMS / 128 0.1295 0.0801 0.0719 0.0771
A-R with LMS / 256 0.1483 0.0921 0.0688 0.0766
A-R with LMS / 512 0.1703 0.0946 0.0670 0.0764
A-R with RLS / 32 0.1264 0.0860 0.0708 0.0688
A-R with RLS / 64 0.1336 0.0945 0.0730 0.0717
A-R with RLS / 128 0.1217 0.0756 0.0676 0.0712
A-R with RLS / 256 0.1238 0.0763 0.0637 0.0662
A-R with RLS / 512 0.1296 0.0904 0.0625 0.0647

disturbance v(t) = h(t)+w(t), in time domain, is shown in
the upper plot of Fig. 12. Its corresponding power spectral

density (PSD) is shown in the bottom plot of Fig. 12.
The effectiveness of the idea proposed in this paper is

demonstrated in Fig. 13, which shows the results obtained
from using the scheme in Fig. 10 with a 256th-order LMS-
based adaptive filter Q (step size µ = 0.05). The upper plot
compares the reference yd(t) with the simulated measure-
ment y(t) and the bottom plot compares the PSDs of d(t)
and y(t). The signal y closely follows yd and the disturbance
v = h+w is rejected. The first fact follows from the upper
plot in Fig. 13 and from noting that the PSD of y has a
spike at 100 Hz. The second fact follows from noting that the
harmonic spikes appearing in the PSD of d are annihilated
by the control scheme and they do not appear in the PSD
of y. In order to highlight the significance of the results in
Fig. 13, the feedforward scheme in Fig. 14 is simulated. The
corresponding results are shown in Fig. 15. Note that in this
case y(t) follows yd(t) perfectly, however, v(t) = h(t)+w(t)
is not attenuated, since as can be seen in the bottom plot of
Fig. 15, all the spikes in the PSD of d remain in the PSD of
y.

The feedforward case is compared to several closed-loop
cases in Table I, where the empirical standard deviations

(ESDs) of the corresponding control errors z(t) (computed
from 300 data points), during the transient (0.3 s) and in
steady state (4 s), are shown. Note that the use of a gain δ 6= 1
increases the convergence speed of the algorithms, since for
every case the ESD at Time = 0.3 is smaller (better) when a
gain δ 6= 1 is used. However, there is a noticeable tradeoff,
since in every case, the steady-state performance is slightly
worse when a gain δ 6= 1 is employed.

V. EXPERIMENTAL RESULTS

The steady-state experimental performances for several
cases (with δ = 1) are shown in Table II. In order to obtain
these data, a feedforward, a purely repetitive, and several
adaptive-repetitive control schemes were implemented. The
sample-and-hold rate is 10 KHz, the LMS algorithm was
run with a step size µ = 0.05 and the RLS algorithm was
implemented with a forgetting factor λ = 0.99999999 and an
initial input variance estimate ε = 0.1. As a benchmark, we
choose the feedforward case in which the input to the system

P̂- - h? -−Ko
-r u z

v

Fig. 14. Block diagram of the feedforward simulation used for analysis
and comparison.

4 4.02 4.04 4.06 4.08 4.1 4.12 4.14 4.16 4.18 4.2

-1

-0.5

0

0.5

1

Time (sec)

D
is

p
. 
(N

o
rm

a
liz

e
d
)

Section of signals y
d
(t) and y(t)

 

 

Reference y
d
(t) = -r(t)

Simulated Measurement y(t)

0 100 200 300 400 500 600 700 800 900 1000
-100

-80

-60

-40

-20

0

Frequency (Hz)
P

o
w

e
r/

fr
e
q
 (

d
B

/H
z
)

Comparison of the PSD Estimates of d(t) and y(t)

 

 
PSD of d(t) = r(t) + h(t) +w(t)
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Fig. 15. Upper Plot: Section of the time series of the reference yd(t) and
the simulated measurement y(t), obtained using the feedforward scheme in
Fig. 14. Bottom Plot: PSDs of the disturbance signal d(t) = r(t)+h(t)+w(t)
and simulated measurement y(t), obtained using the feedforward scheme in
Fig. 14.

P is u = −Kor, as in the simulation in Fig. 14. The time
series for the benchmark experimental case is in shown in the
upper plot of Fig. 16. Here, the measurement y f f (t) closely
follows the reference yd(t). However, since this scheme is
feedforward, no disturbance rejection occurs.

The data in Table II demonstrates that the proposed
adaptive-repetitive scheme significantly improves the perfor-
mance of the system with respect to the feedforward case,
with two clear expectable trends: the higher the order of
the filter Q, the better the achieved performance; the RLS-
based filters perform significantly better than the LMS-based
filters with the same order. Note that these two facts are
also observed (less dramatically) in simulation (see Table I).
The time series of the adaptive-repetitive case, in which an
RLS-based adaptive 128th-order filter Q is used, are shown
in the middle plot of Fig. 16. Noticeably, the measurement
corresponding to this case, yar(t), follows the reference yd(t)
more closely than y f f (t) does. This is consistent with the
data in Table II and with the PSDs in the bottom plot
of Fig. 16, which clearly show that the repetitive part of
the control scheme eliminates the harmonic spikes from
the measurement and that the adaptive part attenuates the
stochastic content between harmonic spikes.

VI. CONCLUSION AND FUTURE WORK

Through analysis and experiments, we showed that com-
bined adaptive and repetitive control strategies can be em-
ployed for reference tracking and for rejecting harmonic
and stochastic disturbances simultaneously in flapping-wing
microrobots. This is relevant when the aerodynamics as-
sociated with flapping-wing microrobots are experimentally
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Fig. 16. Experimental example showing the suitability of the adaptive-
repetitive scheme in Fig. 10 for tracking a desired trajectory yd(t) and
for rejecting harmonic and stochastic disturbances simultaneously. Upper
Plot: Benchmark measurement y f f (t), obtained using a purely feedforward
scheme (u = −Kor). Middle Plot: Measurement yar(t), obtained using the
control scheme in Fig. 10, with a RLS-based Q (128th-order). Bottom Plot:
Comparison of the PSD estimates of y f f (t) and yar(t).

TABLE II

EXPERIMENTAL RESULTS: EMPIRICAL STANDARD DEVIATION OF THE

CONTROL ERROR z = r+ y, IN STEADY STATE

Algorithm / Order of Filter Q After 4.0 s

Feedforward 0.0756
Repetitive 0.0633
Adaptive-Repetitive with LMS / 32 0.0619
Adaptive-Repetitive with LMS / 64 0.0594
Adaptive-Repetitive with LMS / 128 0.0566
Adaptive-Repetitive with LMS / 256 0.0509
Adaptive-Repetitive with LMS / 512 0.0437
Adaptive-Repetitive with RLS / 32 0.0428
Adaptive-Repetitive with RLS / 64 0.0377
Adaptive-Repetitive with RLS / 128 0.0351
Adaptive-Repetitive with RLS / 256 0.0336
Adaptive-Repetitive with RLS / 512 0.0329

studied, since this allows one to enforce desired actuator
outputs, which are proportional to the resulting stroke-angle
trajectories of the robot. Also, the methods proposed here
can be applied in the design and implementation of real-
time strategies for altitude control of flapping-wing flying
microrobots, provided appropriate sensing systems, which is
a matter of future work.
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